2,690 research outputs found

    An information-bearing seed for nucleating algorithmic self-assembly

    Get PDF
    Self-assembly creates natural mineral, chemical, and biological structures of great complexity. Often, the same starting materials have the potential to form an infinite variety of distinct structures; information in a seed molecule can determine which form is grown as well as where and when. These phenomena can be exploited to program the growth of complex supramolecular structures, as demonstrated by the algorithmic self-assembly of DNA tiles. However, the lack of effective seeds has limited the reliability and yield of algorithmic crystals. Here, we present a programmable DNA origami seed that can display up to 32 distinct binding sites and demonstrate the use of seeds to nucleate three types of algorithmic crystals. In the simplest case, the starting materials are a set of tiles that can form crystalline ribbons of any width; the seed directs assembly of a chosen width with >90% yield. Increased structural diversity is obtained by using tiles that copy a binary string from layer to layer; the seed specifies the initial string and triggers growth under near-optimal conditions where the bit copying error rate is 17 kb of sequence information. In sum, this work demonstrates how DNA origami seeds enable the easy, high-yield, low-error-rate growth of algorithmic crystals as a route toward programmable bottom-up fabrication

    Low-energy electron transport with the method of discrete ordinates

    Get PDF
    The one-dimensional discrete ordinates code ANISN was adapted to transport low energy (a few MeV) electrons. Calculated results obtained with ANISN were compared with experimental data for transmitted electron energy and angular distribution data for electrons normally incident on aluminum slabs of various thicknesses. The calculated and experimental results are in good agreement for a thin slab (0.2 of the electron range), but not for the thicker slabs (0.6 of the electron range). Calculated results obtained with ANISN were also compared with results obtained using Monte Carlo methods

    One Tile to Rule Them All: Simulating Any Tile Assembly System with a Single Universal Tile

    Get PDF
    In the classical model of tile self-assembly, unit square tiles translate in the plane and attach edgewise to form large crystalline structures. This model of self-assembly has been shown to be capable of asymptotically optimal assembly of arbitrary shapes and, via information-theoretic arguments, increasingly complex shapes necessarily require increasing numbers of distinct types of tiles. We explore the possibility of complex and efficient assembly using systems consisting of a single tile. Our main result shows that any system of square tiles can be simulated using a system with a single tile that is permitted to flip and rotate. We also show that systems of single tiles restricted to translation only can simulate cellular automata for a limited number of steps given an appropriate seed assembly, and that any longer-running simulation must induce infinite assembly

    Reflections on Tiles (in Self-Assembly)

    Full text link
    We define the Reflexive Tile Assembly Model (RTAM), which is obtained from the abstract Tile Assembly Model (aTAM) by allowing tiles to reflect across their horizontal and/or vertical axes. We show that the class of directed temperature-1 RTAM systems is not computationally universal, which is conjectured but unproven for the aTAM, and like the aTAM, the RTAM is computationally universal at temperature 2. We then show that at temperature 1, when starting from a single tile seed, the RTAM is capable of assembling n x n squares for n odd using only n tile types, but incapable of assembling n x n squares for n even. Moreover, we show that n is a lower bound on the number of tile types needed to assemble n x n squares for n odd in the temperature-1 RTAM. The conjectured lower bound for temperature-1 aTAM systems is 2n-1. Finally, we give preliminary results toward the classification of which finite connected shapes in Z^2 can be assembled (strictly or weakly) by a singly seeded (i.e. seed of size 1) RTAM system, including a complete classification of which finite connected shapes be strictly assembled by a "mismatch-free" singly seeded RTAM system.Comment: New results which classify the types of shapes which can self-assemble in the RTAM have been adde

    Coherent Bayesian inference on compact binary inspirals using a network of interferometric gravitational wave detectors

    Get PDF
    Presented in this paper is a Markov chain Monte Carlo (MCMC) routine for conducting coherent parameter estimation for interferometric gravitational wave observations of an inspiral of binary compact objects using data from multiple detectors. The MCMC technique uses data from several interferometers and infers all nine of the parameters (ignoring spin) associated with the binary system, including the distance to the source, the masses, and the location on the sky. The Metropolis-algorithm utilises advanced MCMC techniques, such as importance resampling and parallel tempering. The data is compared with time-domain inspiral templates that are 2.5 post-Newtonian (PN) in phase and 2.0 PN in amplitude. Our routine could be implemented as part of an inspiral detection pipeline for a world wide network of detectors. Examples are given for simulated signals and data as seen by the LIGO and Virgo detectors operating at their design sensitivity.Comment: 10 pages, 4 figure

    Optimal self-assembly of finite shapes at temperature 1 in 3D

    Full text link
    Working in a three-dimensional variant of Winfree's abstract Tile Assembly Model, we show that, for an arbitrary finite, connected shape XZ2X \subset \mathbb{Z}^2, there is a tile set that uniquely self-assembles into a 3D representation of a scaled-up version of XX at temperature 1 in 3D with optimal program-size complexity (the "program-size complexity", also known as "tile complexity", of a shape is the minimum number of tile types required to uniquely self-assemble it). Moreover, our construction is "just barely" 3D in the sense that it only places tiles in the z=0z = 0 and z=1z = 1 planes. Our result is essentially a just-barely 3D temperature 1 simulation of a similar 2D temperature 2 result by Soloveichik and Winfree (SICOMP 2007)

    The pi N -> pi pi N reaction around the N(1440) energy

    Full text link
    We study the pi N -> pi pi N reaction around the N(1440) mass-shell energy. Considering the total cross sections and invariant mass distributions, we discuss the role of N(1440) and its decay processes. The calculation is performed by extending our previous approach [Phys. Rev. C 69, 025206 (2004)] to this reaction, in which only the nucleon and Delta(1232) were considered as intermediate baryon states. The characteristics observed in the recent data for the pi- p -> pi0 pi0 n reaction obtained by Crystal Ball Collaboration (CBC), can be understood as a strong interference between the two decay processes: N(1440) -> pi Delta(1232) and N(1440) -> N(pi pi)_S. It is also found that the scalar-isoscalar pi pi rescattering effect in the NN*(pi pi)_S vertex, which corresponds to the propagation of sigma meson, seems to be necessary for explain ing the several observables of the pi N -> pi pi N reaction: the large asymmetric shape in the pi0-pi0 invariant mass distributions of the pi- p -> pi0 pi0 n reaction and the pi+ p -> pi+ pi+ n total cross section.Comment: 28 pages, 13 figures. Version to appear in Phys. Rev.

    The Power of Duples (in Self-Assembly): It's Not So Hip To Be Square

    Full text link
    In this paper we define the Dupled abstract Tile Assembly Model (DaTAM), which is a slight extension to the abstract Tile Assembly Model (aTAM) that allows for not only the standard square tiles, but also "duple" tiles which are rectangles pre-formed by the joining of two square tiles. We show that the addition of duples allows for powerful behaviors of self-assembling systems at temperature 1, meaning systems which exclude the requirement of cooperative binding by tiles (i.e., the requirement that a tile must be able to bind to at least 2 tiles in an existing assembly if it is to attach). Cooperative binding is conjectured to be required in the standard aTAM for Turing universal computation and the efficient self-assembly of shapes, but we show that in the DaTAM these behaviors can in fact be exhibited at temperature 1. We then show that the DaTAM doesn't provide asymptotic improvements over the aTAM in its ability to efficiently build thin rectangles. Finally, we present a series of results which prove that the temperature-2 aTAM and temperature-1 DaTAM have mutually exclusive powers. That is, each is able to self-assemble shapes that the other can't, and each has systems which cannot be simulated by the other. Beyond being of purely theoretical interest, these results have practical motivation as duples have already proven to be useful in laboratory implementations of DNA-based tiles

    Semileptonic decays of baryons in a relativistic quark model

    Full text link
    We calculate semileptonic decays of light and heavy baryons in a relativistically covariant constituent quark model. The model is based on the Bethe-Salpeter-equation in instantaneous approximation. It generates satisfactory mass spectra for mesons and baryons up to the highest observable energies. Without introducing additional free parameters we compute on this basis helicity amplitudes of electronic and muonic semileptonic decays of baryons. We thus obtain form factor ratios and decay rates in good agreement with experiment.Comment: 8 pages, 10 figures, 2 tables, typos remove

    Searches for New Quarks and Leptons Produced in Z-Boson Decay

    Get PDF
    We have searched for events with new-particle topologies in 390 hadronic Z decays with the Mark II detector at the SLAC Linear Collider. We place 95%-confidence-level lower limits of 40.7 GeV/c^2 for the top-quark mass, 42.0 GeV/c^2 for the mass of a fourth-generation charge - 1/3 quark, and 41.3 GeV/c^2 for the mass of an unstable Dirac neutral lepton
    corecore